Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Holger B. Friedrich,
Evans O. Changamu and Melanie Rademeyer*

School of Chemistry, University of KwaZuluNatal, Howard College, Durban 4041, South Africa

Correspondence e-mail:
rademeyerm@ukzn.ac.za

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.030$
$w R$ factor $=0.078$
Data-to-parameter ratio $=21.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
[$\mu-1 \kappa C^{1}: 2\left(\mathrm{C}^{2}, \mathrm{C}^{3}-\eta\right)$-Allyl]tetracarbonyl$1 \kappa^{2} C, 2 \kappa^{2} C$-($1 \eta^{5}$-cyclopentadieny) ($2 \eta^{5}$-pentamethylcyclopentadienyl)rutheniumiron hexafluorophosphate

In the molecule of the title compound, $\left[\mathrm{FeRu}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)(\mathrm{CO})_{4}\right] \mathrm{PF}_{6}$, two metal centers are bridged by an allyl chain, resulting in a chiral heterobimetallic molecular ion, with hexafluorophosphate as counter-ion. Both enantiomers are present in the crystal structure, forming a racemate.

Comment

The structure determination of the title compound, (I), was undertaken as part of our ongoing study of the reactions of mixed-ligand, homo- and heterobimetallic compounds (Friedrich et al., 1990). In (I), a σ, π-allyl chain bridges two metal centers, forming a chiral, heterodinuclear molecular cation. The Fe and Ru atoms are coordinated in pseudo-octahedral fashions by η^{5}-pentamethylcyclopentadienyl and η^{5}-cyclopentadienyl ligands, respectively, and also by two carbonyl ligands and by the bridging allyl chain. The molecular geometry is illustrated in Fig. 1, where C12 is a chiral atom.

(I)

On the Fe side of the molecular ion, the metal is coordinated by the allyl chain via two σ-bonds (this coordination could also be viewed as being via a π bond), while the Ru atom is coordinated via a single σ-bond. It is thought that this coordination occurs because the side containing the pentamethylcyclopentadienyl ligand can better stabilize the charge on the molecular ion around the Fe atom due to its enhanced electron-donating capability compared to the cyclopentadienyl ligand. It should be emphasized that, even though the H atoms were positioned geometrically, they could be observed in the Fourier map, which confirmed the allyl coordination in the molecular cation.

Both enantiomers are present in the crystal structure, resulting in a racemic mixture. The asymmetric unit consists of one molecular cation and one anion, with four asymmetric units in the unit cell. In the pentamethylcyclopentadienyl ligand and in the cyclopentadienyl ligand, atoms $\mathrm{C} 1-\mathrm{C} 7$ and C16-C20 are coplanar, with maximum deviations of 0.034 (3) and 0.009 (4) A for atoms C2 and C19, respectively, from their least-squares planes; the dihedral angle between the two planes is $59.3(1)^{\circ}$.
\qquad

Figure 1
The asymmetric unit of the title compound with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Packing diagram for (I), viewed down the b axis.

The $\mathrm{Ru}-\mathrm{C} 13$ [2.182 (3) \AA] bond length is similar to those reported for $\mathrm{Ru}-\mathrm{C} \sigma$-bonds $[2.164$ (7), 2.180 (9) and 2.189 (3) \AA (Finch et al., 1989; Gafoor et al., 1996)]. In (I), the $\mathrm{Fe}-\mathrm{C}($ allyl $)$ [2.173 (2) and 2.291 (3) \AA] bond lengths are significantly different from one another, indicating an unsymmetrical coordination to the Fe atom. These bonds are longer than expected for an $\mathrm{Fe}-\mathrm{C}[2.069$ (10) and 2.057 (3) \AA (Hill et al., 1999; Friedrich et al., 2004)] single bond. However, a single $\mathrm{Fe}-\mathrm{C}(2.338 \AA)$ bond was reported for an Fe atom coordinated by a $\eta-4,1,3$-butadienyl ligand (Casey et al., 1988).

The allyl C11-C12 [1.394 (3) A] bond is slightly longer than a $\mathrm{C}=\mathrm{C}$ double bond (typical value of $1.33 \AA$), and shorter than a $\mathrm{C}-\mathrm{C}$ single bond (expected length $1.54 \AA$). It is suggested that this bond displays both single- and doublebond character. The $\mathrm{C} 12-\mathrm{C} 13$ [1.476 (4) \AA] bond is slightly shorter than a $\mathrm{C}-\mathrm{C}$ single bond. In the crystal structure of the related ionic compound $\left(\mathrm{CpFe}(\mathrm{CO})_{2} \mathrm{CH}_{2} \mathrm{CH}^{+} \mathrm{CH}_{2} \mathrm{Fe}\right.$ $\left.\mathrm{Cp}(\mathrm{CO})_{2}\right) \mathrm{PF}_{6}{ }^{-}$, (II) (Laing et al., 1977), (where Cp is $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$), a more symmetrical cation was described. The authors reported only one metal-C σ-bond per metal center and, in addition, the presence of a weak $\mathrm{Fe} \cdots \mathrm{CH}$ interaction for both metals. $\mathrm{Fe}-\mathrm{C} \sigma$-bond lengths were given as 2.13 and $2.12 \AA$, and the weak $\mathrm{Fe} \cdots \mathrm{CH}$ interaction distances were given as 2.59 and $2.72 \AA$. The $\mathrm{C}-\mathrm{C}$ bonds to the β-carbon were given as 1.41 and $1.43 \AA$. In (I), the longer $\mathrm{Fe}-\mathrm{C} 12$ (allyl) [2.291 (3) \AA] bond is significantly shorter than the weak $\mathrm{Fe} \cdots \mathrm{CH}$ interactions reported in (II), and the long Ru‥C12 [2.975 (3) A.] distance clearly indicates that the type of coordination is different from that observed in (II). Thus, in going from the more symmetrical compound (II) to the title compound (I) by
substituting an Fe metal atom with an Ru atom, as well as replacing the Cp ligand coordinated to the Fe atom with a Cp^{*} ligand, [where $\mathrm{Cp} *$ is $\eta^{5}-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}$], a different type of coordination is observed.

The coordination observed in (I) is similar to that adopted by the monometallic compound dicarbonyl (η-2-3,3-dimethylbutene) $\left(\eta^{5}\right.$-pentamethylcyclopentadienyl)iron tetrakis(3,5bis(trifluoromethyl)phenyl)borate, (III) (Coombs et al., 2004), where $\mathrm{Fe}-\mathrm{C}$ (allyl) bond lengths are 2.096 (6) and 2.233 (7) A, and the C-C allyl bond lengths are 1.393 (9) and 1.551 (9) \AA. The packing of ions, as viewed down the b axis, is illustrated in Fig. 2. Enantiomers alternate along the c axis.

Experimental

Compound (I) was prepared by the reaction of $\mathrm{Cp}^{*}(\mathrm{CO})_{2} \mathrm{Fe}$ $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right) \mathrm{Ru}(\mathrm{CO})_{2} \mathrm{Cp}(0.50 \mathrm{~g}, 0.98 \mathrm{mmol})$ (Friedrich et al., 1990) with $\mathrm{Ph}_{3} \mathrm{CPF}_{6}(0.38 \mathrm{~g}, 0.98 \mathrm{mmol})$ following a procedure related to reported methods (King \& Bisnette, 1967; Friedrich \& Moss, 1993) and crystals were grown by slow diffusion, over several days, of a fivefold excess of diethyl ether into a concentrated solution of compound (I) in acetone held at 278 K (yield $0.57 \mathrm{~g}, 88.6 \%$, m.p. 392393 K).

Crystal data

$\left[\mathrm{FeRu}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)\right.$ $\left.(\mathrm{CO})_{4}\right] \mathrm{PF}_{6}$
$M_{r}=655.31$
Monoclinic, $C c$
$a=21.246$ (2) \AA 。
$b=8.3301$ (18) \AA
$c=16.459(2) \AA$
$\beta=123.109$ (6) ${ }^{\circ}$
$V=2440.0(7) \AA^{3}$
$Z=4$

Data collection

Oxford Excalibur2 diffractometer $\omega-2 \theta$ scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.608, T_{\text {max }}=0.766$
11813 measured reflections
7095 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.078$
$S=1.05$
7095 reflections
336 parameters
H-atom parameters constrained
$D_{x}=1.784 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1090
\quad reflections
$\theta=2-32^{\circ}$
$\mu=1.35 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
Block, yellow
$0.40 \times 0.20 \times 0.20 \mathrm{~mm}$

> 6827 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.021$
> $\theta_{\max }=31.9^{\circ}$
> $h=-30 \rightarrow 31$
> $k=-12 \rightarrow 9$
> $l=-23 \rightarrow 23$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.055 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.024 \\
& \Delta \rho_{\max }=0.80 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.79 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Absolute structure: Flack (1983); } \\
& 3030 \text { Friedel Pairs } \\
& \text { Flack parameter: } 0.007(14)
\end{aligned}
$$

H atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.93$ and 0.98 $(\mathrm{CH}), 0.97\left(\mathrm{CH}_{2}\right)$ and $0.96 \AA\left(\mathrm{CH}_{3}\right)$] and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2\left(1.5\right.$ for methyl) times $U_{\text {eq }}(\mathrm{C})$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and MERCURY (Bruno et al., 2002); software used
to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

The authors thank the National Research Foundation (NRF) and the University of KwaZulu-Natal for funding. EOC thanks Kenyatta University for study leave to undertake this study.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Casey, C. P., Konings, M. S., Gohdes, M. A. \& Meszaros, M. W. (1988). Organometallics, 7, 2103-2107.
Coombs, D. L., Aldridge, S., Rossin, A., Jones, C. \& Willock, D. J. (2004). Organometallics, 23, 2911-2926.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Finch, K. P., Moss, J. R. \& Niven, M. L. (1989). Inorg. Chim. Acta, 166, 181-188.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Friedrich, H. B. \& Moss, J. R. (1993). J. Chem. Soc. Dalton Trans. pp. $2863-$ 2869.

Friedrich, H. B., Moss, J. R. \& Williamson, B. K. (1990). J. Organomet. Chem. 394, 313-327.
Friedrich, H. B., Onani, M. O. \& Rademeyer, M. (2004). Acta Cryst. E60, m551-m553.
Gafoor, M. A., Hutton, A. T. \& Moss, J. R. (1996). J. Organomet. Chem. 510, 233-241.
Hill, R. O., Marais, C. F., Moss, J. R. \& Naidoo, K. J. (1999). J. Organomet. Chem. 587, 28-37.
King, R. B. \& Bisnette, M. B. (1967). J. Organomet. Chem. 7, 311-319.
Laing, M., Moss, J. R. \& Johnson, J. (1977). Chem. Commun. 18, 656-657.
Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.170. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

